ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC cancels advanced reactor meeting due to government shutdown
The Nuclear Regulatory Commission has announced it is cancelling an upcoming advanced reactor stakeholder meeting, originally scheduled for November 19, due to the government shutdown and the limitations on staffing at the agency.
Georgios Tsotridis
Fusion Science and Technology | Volume 37 | Number 3 | May 2000 | Pages 185-197
Technical Paper | doi.org/10.13182/FST00-A133
Articles are hosted by Taylor and Francis Online.
Plasma-facing components (PFCs) in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions, causing melting and evaporation of the metallic surface layer. Simultaneously, large eddy currents are induced in the PFCs, which interact with the large background magnetic field, hence producing substantial forces that have a strong influence on component integrity and lifetime and may cause surface deformations of the melt layer. The shapes of the free surface of the molten layers of pure tungsten metal that are produced under the influence of external body forces arising from electromagnetic fields were studied by using a two-dimensional transient computer program that solves the equations of motion in a two-phase system, with monotonically varying external body forces both in space and in time. It is demonstrated that external body forces, having an outward direction from the plane of the test piece, influence the free surface significantly. Results are presented for different disruption times and for a range of external body forces varying linearly in space and in time. However, it should be stated that the description of the problem and the conclusions are qualitative and represent only a first step in the study of this very complex problem.