ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
A. A. Kabantsev, C. F. Driscoll (18R13)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 96-99
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1324
Articles are hosted by Taylor and Francis Online.
We study ion-induced instability of flute-like (kz [approximately equal to] 0) diocotron modes in pure electron plasmas confined in a cylindrical Penning-Malmberg trap. In the absence of positive ion contamination, the low m diocotron modes are either neutrally stable (for m = 1) or weakly damped (for m = 2,3...) by Landau resonance on electrons corotating with the diocotron waves. By adding a small fraction (<1%) of positive ions into a double-well confinement configuration, we observe exponential instability of low m diocotron modes. The growth rates m are directly proportional to the overall ion fraction, Ni/Ne, and proportional to an effective charge separation of electrons and ions in the periodic wave perturbation.