ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
S. Murakami, H. Yamada, A. Wakasa, H. Inagaki, K. Tanaka, K. Narihara, S. Kubo, T. Shimozuma, H. Funaba, J. Miyazawa, S. Morita, K. Ida, S. Sakakibara, K. Y. Watanabe, M. Yokoyama, H. Maassberg, C. D. Beidler, LHD Experimental Group
Fusion Science and Technology | Volume 51 | Number 1 | January 2007 | Pages 112-121
Technical Paper | Stellarators | doi.org/10.13182/FST07-A1292
Articles are hosted by Taylor and Francis Online.
Electron heat transport in the low-collisonality electron cyclotron heating plasma is investigated to clarify the effect of neoclassical transport optimization on the thermal plasma transport in the Large Helical Device (LHD). Five configurations are realized by shifting the magnetic axis position in major radius: 3.45, 3.53, 3.6, 3.75, and 3.9 m. A clear effective helical ripple (which is a quantitative measure of the neoclassical transport optimization) dependency on the enhancement factor of the global energy confinement relative to ISS95 is observed. Local heat transport analyses show a higher electron temperature and a lower heat transport in the neoclassical transport optimized configuration at half the minor radius. The comparisons of the experimental total heat fluxes with that of the neoclassical transport by DCOM/NNW suggest that the neoclassical transport plays a significant role in the heat transport and that the neoclassical transport optimization is effective in improving the plasma confinement in the low-collisionality LHD plasma.