ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Shin Nishimura, Hideo Sugama, Yuji Nakamura
Fusion Science and Technology | Volume 51 | Number 1 | January 2007 | Pages 61-78
Technical Paper | Stellarators | doi.org/10.13182/FST07-A1288
Articles are hosted by Taylor and Francis Online.
Methods to obtain monoenergetic viscosity coefficients by combining analytical approximations of the linearized drift kinetic equation are studied for a previously formulated full neoclassical transport matrix in general nonsymmetric toroidal plasmas. A unified analytical treatment of two coefficients due to the non-bounce-averaged radial drifts of guiding centers is shown. These coefficients were previously obtained by a direct numerical calculation of the kinetic equation in the three-dimensional (3-D) phase-space (pitch-angle, poloidal and toroidal angles). In a present study, the radial drift term in the equation is divided into three parts, and then the perturbed distribution and the resulting monoenergetic coefficients are expressed by superposed components, which can be calculated by combining analytical methods. An analytical expression for the boundary layer correction to the parallel viscosity in the 1/ regime also is newly derived to complete the full matrix without a numerical calculation in 3-D phase-space. Analytical results given by adding these components approximately reproduce results of the direct numerical calculation of the kinetic equation.