ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Dongxun Zhang, Teruya Tanaka, Takeo Muroga
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1576-1579
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12735
Articles are hosted by Taylor and Francis Online.
Metal organic decomposition (MOD) Er2O3 coating for tritium permeation barrier was fabricated on two ferritic steels with dip-coating method. The interfacial layers, which were formed by the oxidation of the substrates, were found under the coating with different compositions and thickness according to the elemental depth profile of XPS. Their formations depended on the substrate materials (JLF-1: Fe-9Cr-2W based reduced activation ferritic/martensitic steel; SUS430: 18Cr based commercial ferritic steel) and the baking atmosphere (air or Ar). The main reason could be selective oxidation of main elements in the substrates at high temperature with the different baking atmosphere. For the coated JLF-1 samples, the surface smoothness and the hydrogen barrier performance of Er2O3 coatings were improved significantly by changing the baking atmosphere from air to Ar. The composition change in the oxidized interfacial layer from iron oxide to chromium oxide may be the reason for the improved surface smoothness and permeation barrier performance.