ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
J. Maisonneuve, T. Oda, S. Tanaka
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1507-1510
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12718
Articles are hosted by Taylor and Francis Online.
The stability of hydrogen atoms trapped in vacancy clusters of a bcc iron structure is investigated by molecular statics calculations of the hydrogen binding energy to these clusters. The configurations having a minimum potential energy are obtained from the relaxation of a large number of different initial atomic configurations. Calculations of hydrogen binding energy to a mono-vacancy illustrate a relatively large gain of energy in trapping up to two hydrogen atoms in a monovacancy and the increasing difficulty to trap additional atoms due to hydrogen mutual repulsion. Comparison with ab-initio reference calculations of the hydrogen binding energy shows good agreement for up to three trapped hydrogen atoms. Based on the calculations conducted on the most stable vacancy-hydrogen complexes containing two to six vacancies, the maximum capacity of hydrogen atoms per vacancy was found to decrease with the size of vacancy cluster. The calculations of hydrogen binding energies to these clusters show that trapping two hydrogen atoms per vacancy is still a particularly favorable process for vacancy clusters.