ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
M. Bando, K. Ohya, K. Inai
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1467-1470
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12708
Articles are hosted by Taylor and Francis Online.
In order to simulate carbon deposition profile in the divertor of ITER, long-distance transport in the scrape-off-layer and divertor plasma of carbon and hydrocarbons eroded from the divertor target plates are modeled. Physically eroded carbons dominate a sharp profile on the outer target plate, whereas at the inner target plate, a very small redeposition is observed. Chemically eroded hydrocarbons produce a redeposition on the dome area as well as both inner and outer target plates. Assuming tritium content in the redeposited layers, tritium co-deposition profile on the inner and outer target plates and dome is estimated, which allows us to predict the long-term tritium retention in the divertor of ITER.