ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Denis Jurkin, Günther Müllen, Jörg Aign
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1403-1406
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12693
Articles are hosted by Taylor and Francis Online.
Tritium separation factors are extraordinarily important parameters in the development of efficient electrolysis systems for HTO waste volume reduction and tritium recovery purposes as well as for the reproducible analysis of tritium in low-level environmental samples. In the present work, a modular, actively cooled, continuous feed electrolysis setup has been developed. In order to provide a basis for the analysis of electrode specific tritium separation factors and to investigate the system performance, electrolysis of tritiated water was conducted with constant current density in strongly alkaline medium (1 M sodium hydroxide) using platinum as reference electrode material. Furthermore, the energy saving potential of an increase of the number of cell compartments was investigated.