ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Yuji Nakamura, M. Yokoyama, N. Nakajima, K. Y. Watanabe, H. Funaba, Y. Suzuki, K. Ida, S. Sakakibara, H. Yamada, A. Fukuyama, S. Murakami
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 457-463
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1269
Articles are hosted by Taylor and Francis Online.
Development of an integrated simulation system for helical plasma is described that draws new experimental plans, including those in new devices, and does experimental data analysis from the viewpoint of integrated physics. The integrated simulation system to be developed has a modular structure that consists of modules for calculating magnetohydrodynamic (MHD) equilibrium/stability, transport, and heating. Each module can be selected in accordance with a user's request and can be combined with other modules. When we want to perform the integrated simulation during the entire plasma duration, a transport module is to be a core module. An integrated tokamak transport code will be extended for the helical configuration and used as a transport module. As the first step of the extension, time evolution of the plasma net current, which is consistent with the three-dimensional MHD equilibrium, is planned to be solved for Large Helical Device plasmas by taking into account the bootstrap current and the beam-driven current.