ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Takahiko Sugiyama, Eiji Suzuki, Masahiro Tanaka, Ichiro Yamamoto
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1323-1326
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12673
Articles are hosted by Taylor and Francis Online.
Experimental and analytical studies on hydrogen-tritium isotope separation by a CECE process with a LPCE column have been carried out in order to apply it to the water detritiation system for fusion reactors. Kogel catalysts and Dixon gauze rings were mixed at a certain ratio and packed in the column in a random manner. Performance tests of tritium separation by the column of 1 m length and 2.5 cm I.D. were performed at 101 kPa and 343 K. The maximum value of the separation factor was 19200 when the flow rate of hydrogen gas was 5 L/min. The optimum value of catalyst packing ratio was obtained as 35 % by the analysis using the channeling stage model. The values of separation factors predicted by the model corresponded with measured ones very well.