ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
D. Demange et al.
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1317-1322
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12672
Articles are hosted by Taylor and Francis Online.
The CAPER facility operated at the Tritium Laboratory Karlsruhe for the demonstration of the tokamak exhaust processing system comprises a PERMCAT reactor as final clean-up stage. CAPER has been upgraded to enable the production of highly tritiated water (HTW) to be detritiated with PERMCAT. A staged approach for HTW production in CAPER is ongoing, using currently a metal oxide reactor, and later a micro-channel catalytic reactor. The whole experimental plan using the current single-tube PERMCAT reactor shall cover the HTW processing at flow rates up to 10 mL/min, with HTW up to 1.4 MCi/kg (i.e. stoichiometric DTO). The staged approach and corresponding CAPER modifications are described. The first experimental results obtained using metal oxide reactor are reported and discussed.