ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Megumi Toyoshima, Hiroaki Honda, Hiromitsu Watanabe, Yuji Masuda, Kenji Kamiya
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1204-1207
Biology | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12632
Articles are hosted by Taylor and Francis Online.
Tritium, which is a radioactive isotope of the element hydrogen, would a powerful source in fuel future nuclear fusion reactors. Tritium acts much like hydrogen and is easily disbursed in environmental and biological systems. The risk assessment of tritium is one of the major issues arising in the development of the fusion reactors.Exposure to tritium increases the risk of developing cancer as with all ionizing radiation. Cancer risk of tritium in man must be estimated based on experimental studies alone due to lack of human epidemiological data. Although the effects of tritium in mice have been described in many reports, the available information is not sufficient to accurately estimate risk from tritium exposure.To evaluate cancer risk from tritium exposure, we developed Rev1 transgenic mice as a high radiation sensitive assay system. Rev1 has a central role in translesion DNA synthesis (TLS), which is known as error-prone DNA repair. It has been reported that absence of Rev1 sensitizes to a variety of DNA damaging agents including ionizing radiation. Overexpression of Rev1 enhanced chemical-induced tumor development in mice. From these studies, we suggest that Rev1 transgenic mouse may be a useful model system for the study of risk estimation of tritium induced cancers.