ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
F. Castejón, J. M. Reynolds, J. M. Fontdecaba, R. Balbín, J. Guasp, D. López-Bruna, I. Campos, L. A. Fernández, D. Fernández-Fraile, V. Martín-Mayor, A. Tarancón
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 412-418
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1263
Articles are hosted by Taylor and Francis Online.
It was observed previously that the ion temperature profile of low-density electron cyclotron resonance-heated TJ-II plasmas is almost flat and that energetic ions are present well outside the last closed magnetic surface. The heat diffusivity obtained for such ion temperature profiles is very high, and therefore, transport cannot be described by Fick's law. In this work, ion trajectories with different pitches and starting points have been calculated for the relevant magnetic configuration. It is found that a feasible explanation for such a flat mean energy profile is that ion orbits are wide enough to communicate distant parts of the plasma radius, thus giving an effective flat ion temperature profile, for these low-density (<1019-m-3) plasmas. The distribution function is also obtained without considering collisions; thus, non-Maxwellian features are found. The final particle density shows inhomogeneities on a magnetic surface.