ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Toshiyuki Umata, Toshiyuki Norimura
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1193-1196
Biology | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12629
Articles are hosted by Taylor and Francis Online.
A large amount of tritium is required as the fuel source for the nuclear fusion reaction. As a result, during the routine operation or in case of accidents, one of the major issues is the assessment of the biological effects of tritium released from nuclear fusion power plants. In this study, the mutagenic effects of tritiated water (HTO) were compared to those of 137Cs irradiation on spleen T lymphocytes of wild (p53+/+) mice and p53-deficient (p53-/-) mice. In both mice, TCR variant fractions induced by HTO was higher than those by simulation-irradiation of 137Cs rays. When compared on the basis of the induced TCR variant fractions in p53-/- mice at 3 Gy, tritium rays appear to be 1.7 times more mutagenic than rays. On the other hand, in p53+/+ mice, HTO injection increased induced TCR variant fractions significantly, whereas simulation-irradiation did not increase those at all. In order to elucidate the reason responsible for this difference in p53+/+ mice, we investigated the apoptotic ability of spleen T lymphocytes. As a result, the apoptotic ability of spleen T lymphocytes from p53+/+ mice exposed to HTO was reduced significantly compared to that from p53+/+ mice not exposed.