ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Toshiyuki Umata, Toshiyuki Norimura
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1193-1196
Biology | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12629
Articles are hosted by Taylor and Francis Online.
A large amount of tritium is required as the fuel source for the nuclear fusion reaction. As a result, during the routine operation or in case of accidents, one of the major issues is the assessment of the biological effects of tritium released from nuclear fusion power plants. In this study, the mutagenic effects of tritiated water (HTO) were compared to those of 137Cs irradiation on spleen T lymphocytes of wild (p53+/+) mice and p53-deficient (p53-/-) mice. In both mice, TCR variant fractions induced by HTO was higher than those by simulation-irradiation of 137Cs rays. When compared on the basis of the induced TCR variant fractions in p53-/- mice at 3 Gy, tritium rays appear to be 1.7 times more mutagenic than rays. On the other hand, in p53+/+ mice, HTO injection increased induced TCR variant fractions significantly, whereas simulation-irradiation did not increase those at all. In order to elucidate the reason responsible for this difference in p53+/+ mice, we investigated the apoptotic ability of spleen T lymphocytes. As a result, the apoptotic ability of spleen T lymphocytes from p53+/+ mice exposed to HTO was reduced significantly compared to that from p53+/+ mice not exposed.