ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
A. Melintescu, D. Galeriu
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1179-1182
Biology | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12625
Articles are hosted by Taylor and Francis Online.
The continuous efforts dedicated to increase the predictive power of risk assessment for the large tritium releases imply models based on process level analysis. Tritium transfer from atmosphere to plants and the subsequent conversion into organically bound tritium strongly depend on the plant characteristics, seasons, and meteorological conditions, which have a large variability. This paper presents an inter-comparison of different models for canopy resistance and photosynthesis based on knowledge from plant physiology, agro meteorology, crop science, and atmospheric physics. The authors use Jacobs-Calvet-Ronda approach to model the canopy resistance combined with photosynthesis model and the data base taken from WOFOST crop growth model. The same photosynthesis model is used to assess the organically bound tritium production during the daytime and night time.