ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
A. Melintescu, D. Galeriu
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1179-1182
Biology | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12625
Articles are hosted by Taylor and Francis Online.
The continuous efforts dedicated to increase the predictive power of risk assessment for the large tritium releases imply models based on process level analysis. Tritium transfer from atmosphere to plants and the subsequent conversion into organically bound tritium strongly depend on the plant characteristics, seasons, and meteorological conditions, which have a large variability. This paper presents an inter-comparison of different models for canopy resistance and photosynthesis based on knowledge from plant physiology, agro meteorology, crop science, and atmospheric physics. The authors use Jacobs-Calvet-Ronda approach to model the canopy resistance combined with photosynthesis model and the data base taken from WOFOST crop growth model. The same photosynthesis model is used to assess the organically bound tritium production during the daytime and night time.