The present authors have developed the tritium release model to represent the tritium release behavior from solid breeder materials (Li2ZrO3, Li2TiO3, Li4SiO4, LiAlO2 and Li2O). It has been found that water is released from solid breeder materials into the purge gas due to desorption of physically and chemically adsorbed water and water generation reaction and that this water affects the tritium release behavior. In this study, the amount of adsorbed water and its desorption rate for Li2ZrO3 were quantified. It was found in this experiment that Li2ZrO3 has the largest adsorption amount among the solid breeder candidates. It was also observed that Li2ZrO3 has the largest water generation capacity among the solid breeder candidates. A unique reaction at around 550°C which made up approximately 80% of the capacity of water generation was also observed. It is considered that the phase change of ZrO2 at around 550°C supplies oxygen to promote water generation reaction. Tritium release behavior from Li2ZrO3 blanket was estimated using the properties obtained in this study under the operational condition of ITER or a commercial reactor.