ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
I. Ricapito, A. Ciampichetti, R. Lässer, Y. Poitevin, M. Utili
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1159-1162
Blanket and Breeder Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12621
Articles are hosted by Taylor and Francis Online.
Extraction of tritium from liquid lead lithium eutectic alloy is a key topic for the feasibility of any PbLi based tritium breeding blanket (BB). Particularly in DEMO, high tritium extraction efficiency will be required in order to keep low the tritium concentration in the Pb-16Li loop. This is essential to minimize tritium release into the environment and tritium permeation from BB into the primary cooling system. In addition, the tritium extraction process needs to be highly reliable in order not to impact negatively on the operation of the whole fusion reactor, ITER or DEMO.In the present paper, a critical review of the main candidate technologies for tritium extraction from Pb-16Li, particularly gas liquid contactors and vacuum permeators, is accomplished. The intrinsic limits and possible advantages of these technologies are presented and discussed, in the light of considerations coming directly from mathematical models describing their behaviour as well as from the experimental results so far achieved. Needs in terms of R&D activities are identified.