ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Takashi Shimozuma, Shin Kubo, Yasuo Yoshimura, Hiroe Igami, Kazunobu Nagasaki, Takashi Notake, Sigeru Inagaki, Satoshi Ito, Sakuji Kobayashi, Yoshinori Mizuno, Yasuyuki Takita, Kenji Saito, Tetsuo Seki, Ryuhei Kumazawa, Tetsuo Watari, Takashi Mutoh, LHD Experimental Group
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 403-411
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1262
Articles are hosted by Taylor and Francis Online.
The electron cyclotron resonance heating (ECH) system in the Large Helical Device consists of nine gyrotrons: two that are 82.7 GHz, 0.45 MW, and 2 s; two that are 84 GHz, 0.8 MW, and 3 s; one that is 84 GHz, 0.2 MW, and 1000 s; and four that are 168 GHz, 0.5 MW, and 1 s. ECH and electron cyclotron current drive (ECCD) experiments using this system have been conducted not only for plasma heating and current drive experiments but also for transport and power deposition studies with power modulation. The configuration of the recent ECH system including gyrotrons, high-voltage power supplies, and the transmission system is overviewed. The outstanding progress on the ECH/ECCD experimental results is described in detail, which includes an electron transport study in the plasma with an electron internal transport barrier, electron Bernstein wave heating through the mode conversion process, preliminary current drive experiments, and a steady-state plasma sustainment >1 h by only ECH.