ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Takashi Shimozuma, Shin Kubo, Yasuo Yoshimura, Hiroe Igami, Kazunobu Nagasaki, Takashi Notake, Sigeru Inagaki, Satoshi Ito, Sakuji Kobayashi, Yoshinori Mizuno, Yasuyuki Takita, Kenji Saito, Tetsuo Seki, Ryuhei Kumazawa, Tetsuo Watari, Takashi Mutoh, LHD Experimental Group
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 403-411
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1262
Articles are hosted by Taylor and Francis Online.
The electron cyclotron resonance heating (ECH) system in the Large Helical Device consists of nine gyrotrons: two that are 82.7 GHz, 0.45 MW, and 2 s; two that are 84 GHz, 0.8 MW, and 3 s; one that is 84 GHz, 0.2 MW, and 1000 s; and four that are 168 GHz, 0.5 MW, and 1 s. ECH and electron cyclotron current drive (ECCD) experiments using this system have been conducted not only for plasma heating and current drive experiments but also for transport and power deposition studies with power modulation. The configuration of the recent ECH system including gyrotrons, high-voltage power supplies, and the transmission system is overviewed. The outstanding progress on the ECH/ECCD experimental results is described in detail, which includes an electron transport study in the plasma with an electron internal transport barrier, electron Bernstein wave heating through the mode conversion process, preliminary current drive experiments, and a steady-state plasma sustainment >1 h by only ECH.