ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
X. M. Yuan, H. G. Yang, W. W. Zhao, Q. Zhan, Y. Hu, TMT Team
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1065-1068
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12600
Articles are hosted by Taylor and Francis Online.
In a fusion blanket design, ceramic coating such as Al2O3, Er2O3, Y2O3, TiC, TiN and TiC/TiN etc., has been considered as a tritium permeation barrier (TPB) on structural materials (e.g. RAFMs, 316L) by many countries in the past 20 years. The Al2O3 film prepared by in-situ oxidation of the iron aluminide layer is considered one of the most attractive because of the slow-growing steady protective oxide scale and its excellent self-healing ability. In order to obtain a transition aluminide layer with a certain aluminum content and thickness on two kinds of substrates such as the Reduced Activation Ferritic/Martensitic (RAFM) and 316L stainless steel, wide research efforts have been made on the effect of different pack chemistry, temperature and time on the properties and thickness of the aluminizing layers. The results indicated that a dense and uniform coating with a thickness about 20m was formed on CLAM (a Chinese RAFM steel) and 316L substrates for the pack material with low Al content (about 32wt.%). This aluminide coating had a surface aluminum content about 40-50at.% and was mainly consisted of ductile FeAl phase. For the pack material with high Al content (about 50wt.%), the thickness and the surface aluminum content of the aluminizing coating had great increases and there were mainly brittle Fe2Al5 phase. Especially some cracks were observed across this coating on CLAM substrate due to the mismatch in coefficient of thermal expansion (CTE) between the coating and substrate.