ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
T. Sunn Pedersen, J. P. Kremer, R. G. Lefrancois, Q. Marksteiner, N. Pomphrey, W. Reiersen, F. Dahlgren, Xabier Sarasola
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 372-381
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1258
Articles are hosted by Taylor and Francis Online.
We report on the results from initial testing and operation of the Columbia Nonneutral Torus, a new stellarator experiment constructed at Columbia University to study the confinement of nonneutral plasmas, electron-positron plasmas, and stellarator confinement in the presence of strong electrostatic fields. A new algorithm for automatic identification of good magnetic surfaces, island chains, and stochastic regions in Poincaré maps is also described. We present some of the details of the design of the interlocked in-vessel coils and the vacuum system and report on initial vacuum performance. Magnetic surface mapping and visualization results are also presented, confirming the existence of ultralow aspect ratio magnetic surfaces with excellent quality and good agreement with numerical calculations.