ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Bipartisan bill aims to promote nuclear fusion development
Curtis
Cantwell
Sens. Maria Cantwell (D., Wash.) and John Curtis (R., Utah) have introduced a bill that would enable nuclear fusion energy technologies to have access to the federal advanced manufacturing production tax credit.
The companion version of the bill was introduced in the House by Reps. Carol Miller (R., W.Va.), Suzan DelBene (D., Wash.), Claudia Tenney (R., N.Y.), and Don Beyer (D., Va.)
The Fusion Advanced Manufacturing Parity Act extends the federal advanced manufacturing production credit (45X) by adding a 25 percent tax credit for companies that are domestically manufacturing fusion energy components.
J. E. Klein, P. J. Foster
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 964-967
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12576
Articles are hosted by Taylor and Francis Online.
A PAssively Cooled, Electrically heated hydride (PACE) Bed has been deployed into tritium service in the Savannah River Site (SRS) Tritium Facilities. The bed design, absorption and desorption performance, and cold (non-radioactive) in-bed accountability (IBA) results have been reported previously. Six PACE Beds were fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory method. An IBA inventory calibration curve, flowing gas temperature rise (T) versus simulated or actual tritium loading, was generated for each bed. Results for non-radioactive (“cold”) tests using the internal electric heaters and tritium calibration results are presented.Changes in vacuum jacket pressure significantly impact measured IBA T values. Higher jacket pressures produce lower IBA T values which underestimate bed tritium inventories. The exhaust pressure of the IBA gas flow through the bed's U-tube has little influence on measured IBA T values, but larger gas flows reduce the time to reach steady-state conditions and produce smaller tritium measurement uncertainties.