ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
D. Rapisarda, B. Zurro, V. Tribaldos, A. Baciero, TJ-II Team
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 320-325
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1253
Articles are hosted by Taylor and Francis Online.
A local model capable of simulating the cord-integrated emission of spectral lines in the TJ-II stellarator has been developed for inferring local parameters. The procedure was implemented on a numerical code, which starting from given analytical profiles of local emissivity, ion temperature, and toroidal rotation calculates the cord-integrated emission spectra along a selected line of sight. Additionally, the procedure is capable of simulating the toroidal and poloidal velocity contributions for a selected spectral line taking into account TJ-II magnetic topology. Results show good agreement between measurements and numerical simulations for the integrated intensity and ion temperature, and a consistent integrated toroidal rotation velocity, which depends on the emissivity profile.