ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
H. Zhang, A. Ying, M. Abdou, B. Merrill
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 814-818
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST60-814
Articles are hosted by Taylor and Francis Online.
Tritium behavior in the breeder/coolant plays a crucial role in keeping the tritium loss under an allowable limit and realizing high tritium recovery efficiency. In this paper, progress toward the development of a comprehensive 3D predictive capability is discussed and presented. The sequence of transport processes leading to tritium release includes diffusion and convection through the PbLi, transfer across the liquid/solid interface, diffusion of atomic tritium through the structure, and dissolution-recombination at the solid/gas interface. Numerical simulation of the coupled individual physics phenomena of tritium transport is performed for DCLL/HCLL type breeder blankets under realistic reactor-like conditions in this paper. Tritium concentration and permeation are presented and the MHD effects are evaluated. Preliminary results shows that the MHD velocity profile has the significant effect in preventing tritium permeation due to the higher convection effects near the wall.