ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Y. Hirooka, T. Oishi, H. Sato, K. A. Tanaka
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 804-808
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12484
Articles are hosted by Taylor and Francis Online.
Along with pellet implosions, the interior of an inertial fusion reactor will be exposed to intense and short pulse power fluxes, leading to materials ablation. Ablated materials will either collide with each other in the axis-of-symmetry region or be re-deposited elsewhere in the target chamber. The present work is intended to investigate the behavior of colliding ablation plasma plumes and that of materials re-deposition in hydrogenic atmosphere. Laser-ablation plasma plumes of carbon are set to collide with each other in a laboratory-scale experimental setup. Results indicate that carbon cluster ions are formed, including C2+ C3+ C4+ C5+ and C6+, some of which grow into aerosol in the form of micro/nano carbon structure. Also, it has been found that ablated carbon and hydrogen can form co-deposited layers with the H/C ratio, reaching the order of 0.1.