ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
T. D. Bohm, M. E. Sawan, B. Smith, P. P. H. Wilson
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 698-702
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12466
Articles are hosted by Taylor and Francis Online.
The ITER blanket modules (BM) are geometrically complex with many water coolant channels in a SS316 structure. Detailed mapping of nuclear heating, radiation damage, and helium production is an essential input to the design process. Previous high fidelity, high-resolution results calculated with the CAD based DAG-MCNP code revealed important heterogeneity effects on nuclear heating and helium production near steel/water interfaces. We carried out additional analysis for a simplified geometry to understand the reasons behind the observed peaking in the steel nuclear parameters at the interface with the water coolant. The results show that the peaking in nuclear heating is due to the softer neutron spectrum in the portion of steel adjacent to water which results in more gamma generation. Helium production peaking in steel adjacent to the water is due to the softer neutron spectrum which results in increased helium production primarily in B-10 impurities present in the SS316 in addition to a two-step reaction of low-energy neutrons with Ni.