ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
Mario Pillon, Maurizio Angelone, Sandro Sandri
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 687-691
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12464
Articles are hosted by Taylor and Francis Online.
Neutron activation of materials produces an energy release during the subsequent radioactive decay. In a fusion power plant this energy release is of the order of MWs. Accurate prediction of this decay heat is fundamental for the design of a fusion power plant, especially for the safety analysis. A very efficient detector system able to measure both electron and photon heats simultaneously and separately has been developed at ENEA Frascati and has been already used to validate the predictions of computer codes developed to calculate neutron activation energy release. In this paper we report measurements on some elements (tin, tantalum and lead) that have been irradiated with the D-T fusion neutrons produced by the Frascati Neutron Generator FNG. These elements could be present in ITER materials and give a significant contribution to the total radioactive inventory, especially if they produce long-live radionuclides. The scope of this study is to validate the general purpose code European Activation code System EASY-2007 comparing the results of the measurements with code predictions. The results are presented in terms of C/E (Calculation vs. Experiment) together with the associated uncertainties.