ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
T. Tanaka et al.
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 681-686
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12463
Articles are hosted by Taylor and Francis Online.
To examine the accuracy in the neutronics calculations for the Li/V-alloy blanket system without Be neutron multiplier, a fusion neutronics experiment on a Li/V-alloy assembly has been performed with a 14 MeV neutron source. Reaction rates and tritium production rates (TPRs) in the assembly were measured with activation foils and Li2CO3 pellets. The measured reaction rates sensitive to fast neutrons agreed almost within ~10 % with ones calculated by using the MCNP5 code, JENDL-3.3 library and JENDL dosimetry file 99. Though there appeared a possibility of a significant underestimation in the transport calculations for the energy range of <~4 keV due to nuclear data of vanadium, the measured TPR was consistent with the calculated one within ~8 %.