ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
T. J. Renk, B. Williams, L. El-Guebaly, A. Jaber
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 570-578
IFE Design & Technology | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12444
Articles are hosted by Taylor and Francis Online.
The level of energy deposition on future inertial fusion energy (IFE) reactor first walls, particularly in direct-drive scenarios, makes the ultimate survivability of such wall materials a challenge. We investigate the survivability of three-dimensional (3-D) dendritic materials fabricated by chemical vapor deposition (CVD), and exposed to repeated intense helium beam pulses on the RHEPP-1 facility at Sandia National Laboratories. Prior exposures of flat materials have led to what appears to be unacceptable mass loss on timescales insufficient for economical reactor operation. Two potential advantages of such dendritic materials are a) increased effective surface area, resulting in lowered fluences to most of the wall material surface, and b) improvement in materials properties for such micro-engineered metals compared to bulk processing. Several dendritic fabrications made with either tungsten and tungsten with rhenium show little or no morphology change after up to 800 pulses of 1 MeV helium at reactor-level thermal wall loading. Since the rhenium is added in a thin surface layer, its use does not appear to raise environmental concerns for fusion designs.