ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Yasushi Yamamoto, Mai Ichinose, Fumito Okino, Kazuyuki Noborio, Satoshi Konishi
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 558-562
Blanket Design and Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12442
Articles are hosted by Taylor and Francis Online.
In the design of the fusion blanket, it is important to gather generated tritium as quick as possible and supply them to a fuel supply system for keeping fuel cycle and reducing tritium inventories in the fusion reactor at the same time.In the advanced blanket concept which uses Lithium-Lead (LiPb) as the working fluid for heat removal, neutron shielding and tritium breeding, collection of generated tritium is thought not to be difficult as the solubility of hydrogen into the LiPb is small enough. But examination and design of these collecting systems was not fully studied.In this paper, we made the conceptual design of the tritium collecting device using vacuum sieve tray, and studied formation process of LiPb droplets by making a simple experimental device. It was found that droplets of about 0.9-mm radius were formed at 8~12-cm distance from nozzle when LiPb discharges from the nozzle with 1-mm diameter hole at pressure of 2.5×104 Pa. Using this value, it is estimated that the tritium collecting efficiency of 45% can be achieved with 1-m height single stage sieve tray at temperature of 500 °C.