ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
I. Tazhibayeva, I. Lyublinski, A. Vertkov, V. Lazarev, E. Azizov, G. Mazzitelli, P. Agostini
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 554-557
Blanket Design and Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12441
Articles are hosted by Taylor and Francis Online.
The objective of this work is to carry out the tests of the KTM tokamak lithium divertor model as well as develop recommendations on the use of lithium technologies in tokamak-reactors. Li-technology will be developed and a Na-K cooled KTM tokamak lithium divertor module will be designed and tested as a result of the project completion. It will be possible to operate the renewed lithium surface module under specific heat loads from 2 to 10 MW/m2 while in a quasi-stationary mode, discharge duration of up to ~5 s. The technical project proposal; design scheme and sketches; and procedure development for preparation, protection, cleaning and rehabilitation of lithium CPS (capillary-porous system) surfaces in tokamak conditions have been completed. The design substantiation calculations; technique development for lithium handling in tokamak conditions; and confirming experiments on T-11M tokamak to prove the procedures developed are still in a progress. The study of both the lithium influence on the KTM plasma discharge parameters and specific power load on the plasma facing components as well as the selection of optimum operational modes of the lithium divertor will be accomplished after completion of the start-up and adjustment tests of the KTM tokamak divertor demonstration models.