ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bong-Ki Jung, Soon-Wook Jung, Jae-Ryung Lee, Kyoung-Jae Chung, Y. S. Hwang
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 107-111
doi.org/10.13182/FST11-A12415
Articles are hosted by Taylor and Francis Online.
Inertial electrostatic confinement (IEC) fusion device has been investigated as a compact fusion source to generate byproducts of fusion reactions for many applications. However, the IEC fusion device still has insufficient fusion reaction rate and stability issues in high power operation. In this work, a cylindrical IEC device is designed and discharge voltage and current at various pressures and geometries are studied to understand their effect on discharge. From this result, three key features is observed and discussed: 1) discharge voltage in IEC device increases with lower transparent cathode at the identical operating pressure, 2) high voltage and current discharge can be obtained with higher operating pressure at the identical pd value. 3) high voltage discharge without decrease of operating pressure can be obtained by considering limit length of cathode diameter in IEC device. Based on these results, it is supposed that transparency and size of cathode in an IEC device can be optimized for high voltage and current discharge with relatively high operating pressure to increase fusion reactions of beam-cathode surface and beam-background gas besides ion-ion fusion reaction in continuous IEC discharge. Consequently, these results can be reflected on design of a high-yield fusion sources.