ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
R. A. Renzetti, H. R. Z. Sandim, A. F. Padilha, D. Raabe, R. Lindau, A. Möslang
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 22-26
doi.org/10.13182/FST11-A12400
Articles are hosted by Taylor and Francis Online.
Oxide dispersion strengthened (ODS) ferritic/martensitic (FM) steels are promising candidates for structural applications in future fusion power reactors. In order to evaluate the thermal stability of 80% cold-rolled ODS-EUROFER, samples were annealed for 1 h at temperatures up to about 0.9 Tm, where Tm is the absolute melting point. The characterization of the annealed samples was performed using transmission electron microscopy and electron backscatter diffraction. Results show that static recovery is the main softening mechanism of this steel when annealed below 800°C. The volume fraction of recrystallized grains is quite small (below 0.10). Above 900°C, martensitic transformation takes place causing pronounced hardening. Large M23C6 particles are found at the grain boundaries after tempering at 750°C for 2 h.