ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
M. Isobe, K. Nagaoka, Y. Yoshimura, T. Minami, T. Akiyama, C. Suzuki, S. Nishimura, K. Nakamura, A. Shimizu, C. Takahashi, K. Toi, K. Matsuoka, S. Okamura, CHS Team, H. Matsushita, S. Murakami
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 229-235
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1240
Articles are hosted by Taylor and Francis Online.
The results of experiments to attain high stored energy and density in the Compact Helical System (CHS) are reported. The experiments have been carried out under the maximum neutral beam heating power and highest magnetic field strength of the CHS. With the help of the reheat mode, we have so far reached a stored energy of 9.4 kJ and a density limit expressed as nc = 0.65(PabsBt /Vp)0.5 for the CHS. In the high-density regime, the confinement of CHS plasma is limited by radiation collapse. A multichannel H light detector system shows an asymmetric feature in the poloidal cross section and indicates that confinement degradation in the high-density regime begins at the inboard side where the CHS plasma is close to the vacuum vessel wall.