ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
Makoto Kobayashi et al.
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 403-406
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12389
Articles are hosted by Taylor and Francis Online.
The trapping and release mechanisms of hydrogen isotopes for the stainless steel (SS) oxidized at various temperatures were investigated. The oxide layer was mainly consisted of iron oxides (FexOy) and its decomposition temperature was almost consistent with the release temperature of deuterium, where major chemical form was a molecular deuterium (D2). The deuterium retention was increased as the oxidation temperature increased. It was considered that the thickness of oxide layer would make a large influence on the retention of hydrogen isotopes. On the other hand, the amount of released deuterium as heavy water (D2O) was independent with oxidation temperature. It was considered that the formation of hydrogen isotope as water form was depended on the amount of FexOy on the top most surface layer of SS.