ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
K. A. Tanaka, A. Hassanein, Y. Hirooka, T. Kono, S. Misaki, T. Ohishi, A. Sunahara, S. Tanaka
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 329-333
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12374
Articles are hosted by Taylor and Francis Online.
Laser ablation scheme can cover pretty wide range of intensity regime as a heat source at its laser focus spot from 103 W/cm2 to 1014 W/cm2. These intensities cover the ones expected at the divertor (MFE) and the first walls (IFE) in a reactor. For example expected values are of 10 to 100 MW/m2 at MFE divertor and 109 W/cm2 or higher at IFE first walls. The ablation may include plasma, gas, liquid, or solid: all possible phases mixed at an extreme condition where temperature may exceed 1 eV with corresponding densities. The areas of these mixed phases at extreme conditions (MPEC) have not been systematically studied. The inside of the solid wall becomes so called “Warm Dense Matter” where the details of the states should still be clarified.In our experimental setting up, the ablated plumes can be aligned orthogonally and can cross each other. The collision processes include Coulomb, elastic, molecular, and cluster collisions at the cross point. The characteristics of this experimental platform are introduced and attractive application is indicated.