ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
H. Katsui, A. Hasegawa, Y. Katoh, Y. Hatano, T. Tanaka, S. Nogami, T. Hinoki, T. Shikama
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 288-291
In-Vessel Components - FW, Blanket, Shield & VV | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12367
Articles are hosted by Taylor and Francis Online.
Compatibility of monolithic silicon carbide (SiC) with ternary lithium ceramics (Li1-xAlO2-y, Li2-xTiO3-y, Li2-xZrO3-y and Li4-xSiO4-y) under irradiation of neutrons at high temperatures was studied. Disk samples of SiC in contact with sintered ternary lithium ceramics were irradiated in High Flux Isotope Reactor (HFIR) at 800 °C to 5.9 displacements per atom (dpa). Chemical reactions of SiC as determined by appearance of the surface were relatively less significant for the systems of SiC/Li1-xAlO2-y and SiC/Li2-xTiO3-y, whereas some bonding likely due to chemical reaction between SiC and the lithium ceramics and broken samples were observed in the systems of SiC/Li2-xZrO3-y and SiC/Li4-xSiO4-y. The effect of lithium burnup due to the (n, ) nuclear reaction was also examined by using samples of lithium ceramics whose lithium ratio was hypo-stoichiometric in the fabrication process. More reaction products were observed on the surface of -SiC in contact with Li1-xAlO2-y having the lower lithium ratio (Li/Al). It was considered that the formation of LiAl5O8 phase due to lithium loss could deteriorate the compatibility of the SiC - Li1-xAlO2-y system.