ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
H. Katsui, A. Hasegawa, Y. Katoh, Y. Hatano, T. Tanaka, S. Nogami, T. Hinoki, T. Shikama
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 288-291
In-Vessel Components - FW, Blanket, Shield & VV | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12367
Articles are hosted by Taylor and Francis Online.
Compatibility of monolithic silicon carbide (SiC) with ternary lithium ceramics (Li1-xAlO2-y, Li2-xTiO3-y, Li2-xZrO3-y and Li4-xSiO4-y) under irradiation of neutrons at high temperatures was studied. Disk samples of SiC in contact with sintered ternary lithium ceramics were irradiated in High Flux Isotope Reactor (HFIR) at 800 °C to 5.9 displacements per atom (dpa). Chemical reactions of SiC as determined by appearance of the surface were relatively less significant for the systems of SiC/Li1-xAlO2-y and SiC/Li2-xTiO3-y, whereas some bonding likely due to chemical reaction between SiC and the lithium ceramics and broken samples were observed in the systems of SiC/Li2-xZrO3-y and SiC/Li4-xSiO4-y. The effect of lithium burnup due to the (n, ) nuclear reaction was also examined by using samples of lithium ceramics whose lithium ratio was hypo-stoichiometric in the fabrication process. More reaction products were observed on the surface of -SiC in contact with Li1-xAlO2-y having the lower lithium ratio (Li/Al). It was considered that the formation of LiAl5O8 phase due to lithium loss could deteriorate the compatibility of the SiC - Li1-xAlO2-y system.