For the second qualification of the blanket First Wall (FW) procurement of the International Thermonuclear Experimental Reactor (ITER), a semi-prototype of the FW has been designed with increased local surface heat flux up to 5 MW/m2. In order to investigate the fabrication procedure and methods, two types of mock-up were fabricated; one was with twelve Be tiles for high heat flux test to check the joining integrity between Be tiles and the bending Cu block and the other was for testing the thermal-hydraulic prediction by commercial code, ANSYS-CFX when it has a complex geometry such as hypervapotron, which was used for designing the semi-prototype. The former was successfully fabricated and the test conditions were obtained through the preliminary analysis with ANSYS-CFX. The later was successfully fabricated and the test with KoHLT-2 (Korea Heat Load Test facility) was performed; mass flow rate of inlet coolant was the same as the ITER condition and heat flux was loaded up to 0.65 MW/m2. The results show that the temperature of the mock-up can be predicted using the ANSYS-CFX even with the complex geometry.