ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
A. Bayramian et al.
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 28-48
IFE - NIF & LIFE | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST10-313
Articles are hosted by Taylor and Francis Online.
This paper presents our conceptual design for laser drivers used in Laser Inertial Fusion Energy (LIFE) power plants. Although we have used only modest extensions of existing laser technology to ensure near-term feasibility, predicted performance meets or exceeds plant requirements: 2.2 MJ pulse energy produced by 384 beamlines at 16 Hz, with 18% wall-plug efficiency. High reliability and maintainability are achieved by mounting components in compact line-replaceable units that can be removed and replaced rapidly while other beamlines continue to operate, at up to ~13% above normal energy, to compensate for neighboring beamlines that have failed. Statistical modeling predicts that laser-system availability can be greater than 99% provided that components meet reasonable mean-time-between-failure specifications.