ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
T. Estrada, D. López-Bruna, A. Alonso, E. Ascasíbar, A. Baciero, A. Cappa, F. Castejón, A. Fernández, J. Herranz, C. Hidalgo, J. L. De Pablos, I. Pastor, E. Sánchez, J. Sánchez, L. Krupnik, A. A. Chmyga, N. Dreval, S. M. Khrebtov, A. D. Komarov, A. S. Kozachok, V. Tereshin, A. V. Melnikov, L. Eliseev
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 127-135
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1228
Articles are hosted by Taylor and Francis Online.
In most helical systems, electron-internal transport barriers (e-ITBs) are observed in electron cyclotron heated (ECH) plasmas with high heating power density. In the stellarator TJ-II, e-ITBs are easily achievable by positioning a low-order rational surface close to the plasma core because this increases the density range in which the e-ITB can form. Experiments with different low-order rationals show a dependence of the threshold density and barrier quality on the order of the rational (3/2, 4/2, 5/3 . . .). In addition, quasi-coherent modes are frequently observed before and/or after the e-ITB phenomenon at the radial location of the transport barrier foot. Such modes vanish as the barrier is fully developed.