ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
G. A. Cottrell, R. Pampin, N. P. Taylor
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 89-98
Technical Paper | doi.org/10.13182/FST06-A1224
Articles are hosted by Taylor and Francis Online.
We present calculations of the transmutation of initially pure tungsten first-wall and divertor plasma-facing armor into W-Re-Os alloys in the European Union Power Plant Conceptual Study (PPCS) fusion plant models A, B, and AB. The fusion neutron spectrum was modeled using the MCNP Monte Carlo code including resonance self-shielding effects, and we have calculated the evolution of the W-Re-Os alloy compositions. Trajectories of the alloys in the thermodynamic phase diagram show that the alloys remain in the single body-centered-cubic phase for their service lifetimes. Results for PPCS models A and B with soft neutron spectra show that the first-wall armor transmutes to an end-of-service alloy composition of approximately 91 at.% tungsten, 6 at.% rhenium, and 3 at.% osmium at its rear face. On the plasma-facing side of the tungsten, the effect of neutron shielding is larger. For PPCS model AB, the neutron spectrum is energetically harder, resulting in significantly lower tungsten transmutation rates.