ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Peter S. Ebey, James M. Dole, Arthur Nobile, Jon R. Schoonover, John Burmann, Bob Cook, Steve Letts, Jorge Sanchez, Abbas Nikroo
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 859-864
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1214
Articles are hosted by Taylor and Francis Online.
The purpose of the experiments described in this paper was to expose samples of polymeric materials to a mixture of deuterium-tritium (DT) gas at elevated temperature and pressure to investigate the effects (i.e., damage) on the materials. The materials and exposure parameters were chosen to be relevant to proposed uses of similar materials in inertial fusion ignition experiments at the National Ignition Facility. Two types of samples were exposed and tested. The first type consisted of 10 4-lead ribbon cables of fine manganin wire insulated with polyimide. Wires of this type are proposed for use in thermal shimming of hohlraums and the goal of this experiment was to measure the change in electrical resistance of the insulation due to tritium exposure. The second type of sample consisted of 20 planar polymer samples that may be used as ignition capsule materials. The exposure was at 34.5 GPa (5010 psia) and 70°C for 48 h. The change in electrical resistance of the wire insulation will be presented. The results for capsule materials will be presented in a separate paper in this issue.