ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Yoshinori Kawamura, Mikio Enoeda, R. Scott Willms, Peter M. Zielinski, Richard H. Wilhelm, Masataka Nishi
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 54-61
Technical Paper | doi.org/10.13182/FST00-A121
Articles are hosted by Taylor and Francis Online.
The cryosorption method is useful for extracting hydrogen isotopes from a helium gas stream with a small amount of hydrogen isotopes. Therefore, in fusion reactors, this method is expected to be applied for the helium glow discharge exhaust gas processing system and the blanket tritium recovery system. To design these systems, adsorption isotherms for each hydrogen isotope are needed, making it possible to estimate the amount of adsorption in a wide pressure range. The amount of tritium adsorption on molecular sieve 5A, molecular sieve 4A, and activated carbon, which are potential adsorbents in the cryosorption bed, at liquid nitrogen temperature were quantified using the volumetric method. It was found that adsorption isotherms of tritium were also expressed with the two-site Langmuir model and that the obtained isotherms were close to the reported isotherms, the Langmuir coefficients for which were estimated using a reduced mass of hydrogen isotopes.