ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Jon D. McWhirter, Michael E. Crawford, Dale E. Klein, Thomas L. Sanders
Fusion Science and Technology | Volume 33 | Number 1 | January 1998 | Pages 22-30
Technical Paper | doi.org/10.13182/FST98-A12
Articles are hosted by Taylor and Francis Online.
An analytical model for magnetohydrodynamic flow in a porous medium comprised of a packed bed of uniform spheres is developed. A rectangular geometry only is considered. Two distinct cases are studied: an infinite packed bed and a finite packed bed including wall effect. The wall effect is modeled by employing a two-zone porosity model, with a higher porosity wall region inserted between the solid wall and the lower porosity core region. The effect of the conductivity of the packed bed is accounted for by analogy with Hartmann flow in a duct with an external load. A parametric analysis is performed with the completed model to assess the effects of various factors upon the model results.