ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
R. R. Paguio, S. P. Paguio, C. A. Frederick, A. Nikroo, O. Acenas
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 743-749
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1195
Articles are hosted by Taylor and Francis Online.
Poly(-methylstyrene) (PAMS) shells are made by microencapsulation and used in the fabrication of a large variety of targets for the inertial confinement fusion (ICF) program. Although this process has previously been developed into production mode, the yield of shells with acceptable sphericity and wall uniformity in the OMEGA size range (800-1000 m) has been poor (~ 18%). We have made improvements in the yield of these shells by modifying the composition of the outer water solution (W2) in the microencapsulation emulsion. This improvement was achieved by increasing the concentration of Poly Vinyl Alcohol (PVA) from 0.3% to 1.0% and an addition of 0.1% Poly Acrylic Acid (PAA). These modifications were aimed at increasing the interfacial surface tension in the emulsion but also appear to have played a role in density matching the components in the PAMS emulsion. These modifications improved the out of round (OOR) and non-concentricity (NC) of the PAMS mandrels resulting in as increase in the yield of target quality batches based on these basic criteria from 18% to over 80%. Meanwhile, the vacuole content and the surface finish of the PAMS shells were not adversely affected by these changes.