ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. R. Paguio, S. P. Paguio, C. A. Frederick, A. Nikroo, O. Acenas
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 743-749
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1195
Articles are hosted by Taylor and Francis Online.
Poly(-methylstyrene) (PAMS) shells are made by microencapsulation and used in the fabrication of a large variety of targets for the inertial confinement fusion (ICF) program. Although this process has previously been developed into production mode, the yield of shells with acceptable sphericity and wall uniformity in the OMEGA size range (800-1000 m) has been poor (~ 18%). We have made improvements in the yield of these shells by modifying the composition of the outer water solution (W2) in the microencapsulation emulsion. This improvement was achieved by increasing the concentration of Poly Vinyl Alcohol (PVA) from 0.3% to 1.0% and an addition of 0.1% Poly Acrylic Acid (PAA). These modifications were aimed at increasing the interfacial surface tension in the emulsion but also appear to have played a role in density matching the components in the PAMS emulsion. These modifications improved the out of round (OOR) and non-concentricity (NC) of the PAMS mandrels resulting in as increase in the yield of target quality batches based on these basic criteria from 18% to over 80%. Meanwhile, the vacuole content and the surface finish of the PAMS shells were not adversely affected by these changes.