ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
K. C. Chen, A. Nikroo
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 721-727
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1192
Articles are hosted by Taylor and Francis Online.
The surface of vapor-deposited polyimide (PI) coating onto a mechanically agitated mandrel has always been rougher than the NIF standard. The roughness has been attributed to various sources, including defects and contamination on substrate mandrels, abraded damage from mechanical agitation, or off-stoichiometric compositions.At near-stoichiometric deposition conditions, the surface roughness is primarily due to damages from collisions. Using a plastic mesh container with a suitable opening size and synchronized gentle tapping, we have greatly improved the surface quality of 1 mm diameter 4-5 m thick polyimide shells. The plastic mesh improves the surface quality by limiting shell movements and reducing the impact force and number of collisions between the shells during coating. The surface smoothness of the as-deposited polyamic acid coating meets the NIF surface smoothness standard. Appropriate pressure and heat profiles are used to remove the mandrel and convert the thin polyamic acid coating into polyimide and preserve the surface smoothness. The AFM spheremaps, patch scans and WYKO optical interferometer measurement showed a root-mean-square smoothness ranging 3-5 nm.