ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
W. Kasparek, R. Van Den Braber, N. Doelman, E. Fritz, V. Erckmann, F. Hollmann, G. Michel, F. Noke, F. Purps, W. Bongers, B. Krijger, M. Petelin, L. Lubyako, A. Bruschi, ECRH Groups at IPP Greifswald and IPF Stuttgart
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 729-741
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST11-A11738
Articles are hosted by Taylor and Francis Online.
Electron cyclotron resonance heating (ECRH) systems for next-step large fusion devices operate in continuous wave power in the multimegawatt range. The unique feature of narrow and well-localized power deposition assigns a key role to ECRH for different tasks, such as plasma start-up, electron heating, current drive, magnetohydrodynamic (MHD) control and profile shaping. The integration of high-power microwave diplexers in the transmission lines will improve the flexibility and efficiency while simultaneously reducing the complexity of large ECRH systems. They can serve as power or beam combiners, as slow and fast directional switches to toggle the power from continuously operating gyrotrons between two launchers, and as discriminators of low-power electron cyclotron emission (ECE) signals from high-power ECRH using a common transmission line and antenna. Among various design options a resonant diplexer with a narrow resonance was selected for application at ASDEX Upgrade. The design is driven by the specific physics requirements for MHD control experiments and possible use for line-of-sight ECE. The compact, waveguide-compatible design features a feedback-controlled mirror drive for tracking of the resonator to the gyrotron frequency. High-power, long-pulse tests were performed with the 140-GHz ECRH system for the stellarator W7-X. Results on the transmission characteristics, power combination, and stationary and controlled distribution of the input power to two outputs are presented. The qualification for in-line ECE was investigated.