ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
D. M. S. Ronden, M. A. Henderson, B. Becket, T. Bigelow, J. Caughman, C. Darbos, F. Gandini, C. Nazare, D. Rasmussen, V. Udintsev
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 718-728
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST59-718
Articles are hosted by Taylor and Francis Online.
An engineering study has been performed on the ITER electron cyclotron transmission lines with the aim of optimizing its conceptual design. The support types and optimum spacing, cooling, vacuum, seismic, and gravitational effects were reviewed. For the vacuum system it was shown that two pumps per line, with a capacity of 50 l/s, are sufficient. It was explained that the temperature variation inside the building is the predominant factor that influences the thermal expansion of the lines. The support strategy is one of minimizing the number of constraints. Variation in support interspacing reduces the degree of harmonic disturbances. The section of transmission line inside the ITER port cell was identified as critical with regards to occurrence of deformation and stresses. Potential solutions are described. The use of seismic breaks is discussed in light of the differences in foundation and structure of the ITER tokamak building and assembly hall. It is proposed that this interface be studied in more detail, after more data is available on the behavior of these buildings. The geometry of individual supports should be simple, with the fewest possible adjustments. The supports are designed to allow small movements of the waveguide to compensate for the thermal expansion or contraction. The transmission line system can be made for optimum alignment during nominal operating temperatures by prestressing during installation.