ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
R. Fitzpatrick
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Page 625
Appendix A | Fourth ITER International Summer School (IISS2010) / Extended Abstracts | doi.org/10.13182/FST11-A11706
Articles are hosted by Taylor and Francis Online.
Tearing modes are magnetohydrodynamic (MHD) instabilities that often limit fusion plasma performance in tokamaks. As the name suggests, tearing modes tear and reconnect magnetic field lines, in the process converting nested toroidal flux surfaces into helical magnetic islands. Such islands degrade plasma confinement because heat and particles are able to travel radially from one side of an island to another by flowing along magnetic field lines, which is a relatively fast process, instead of having to diffuse across magnetic flux surfaces, which is a relatively slow process. [first paragraph from extended abstract]