ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Jean Johner
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 308-349
Technical Paper | doi.org/10.13182/FST11-A11650
Articles are hosted by Taylor and Francis Online.
The HELIOS zero-dimensional code (Version 1.0) is described in detail in the case of deuterium-tritium (D-T) plasmas.The part of the code described solves in a self-consistent way the thermal equilibrium equation of a D-T thermonuclear plasma coupled to the conservation equation of the helium ash with a He*/E = const. constraint.Prominent features of the modeling are the following: description of any type of last closed magnetic surface (LCMS) by means of four portions of conics; exact closed form expressions for the poloidal surface, plasma volume, plasma surface, and LCMS length; exact surface and volume integration (for arbitrary aspect ratio) in the approximation of magnetic surfaces similar to the LCMS; parabolic type density profile and two-parameters temperature profile, both with pedestals and finite values at the separatrix; line radiation of light impurities calculated from tabulated radiative power loss functions; scalings for the pedestal temperature, L-H transition, and confinement time; modeling for the divertor thermal load; self-consistent radial build modeling for the plateau duration calculation; and detailed power plant thermal balance.Applications to ITER and DEMO operation and to inductive reactor design are given.