ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
W. R. Meier, W. J. Hogan
Fusion Science and Technology | Volume 49 | Number 3 | April 2006 | Pages 532-541
Technical Paper | Fast Ignition | doi.org/10.13182/FST06-A1165
Articles are hosted by Taylor and Francis Online.
Using a simple inertial fusion energy (IFE) power plant economic model, it is demonstrated that there are several potential advantages of an IFE power plant based upon fast ignition targets compared with one based upon central ignition targets. The fast ignition version can have a lower cost of electricity (COE) at the same output power, and a smaller fast ignition plant can have the same COE as a larger central ignition plant. This paper also considers the chamber issues raised by using fast ignition targets. Some direct-drive chamber concepts must be larger for cone-focus fast ignition targets because of the increase in the X-ray output. On the other hand, the use of fast ignition hohlraum targets may allow the use of thick-liquid-wall chambers, bringing the benefits of a smaller chamber and containment building, smaller amounts of hazardous waste, and a faster and cheaper development path. However, many technology issues need resolution before these benefits can become a reality.